
www.manaraa.com

Addressing Safety and Security Contradictions in Cyber-Physical Systems

Mu Sun, Sibin Mohan, Lui Sha and Carl Gunter
Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61802,

[musun,sibin,lrs,cgunter]@illinois.edu

Abstract

Modern cyber-physical systems are found in important
domains such as automobiles, medical devices, building
automation, avionics, etc.. Hence, they are increasingly
prone to security violations. Often such vulnerabilities oc-
cur as a result of contradictory requirements between the
safety/real-time properties and the security needs of the sys-
tem. In this paper we propose a formal framework that as-
sists designers in detecting such conflicts early, thus in-
creasing both, the safety and the security of the overall sys-
tem.

1. Introduction
Embedded systems have permeated into every aspect of

day-to-day life, ranging from non-critical systems (televi-
sions or toasters), moderately critical systems (stop lights),
to highly critical ones (anti-lock breaks, hydro-electric dam
controls, flight control systems, etc.). The latter two cate-
gories are examples of cyber-physical systems (CPS) where
system control affects human lives or interacts with the en-
vironment in general. CPS system requirements have al-
ways been required to maintain the highest caliber in terms
of timing, reliability, fault-tolerance, etc. With the ever-
increasing use of such systems, ensuring that CPS are se-
cure from intrusion and tampering by adversaries is the next
important design challenge. However, with the many strict
design requirements in place adding security into existing
systems requires additional thought [8] and can easily create
conflicts. These conflicts could result in either (a) overly se-
cure systems that compromise the reliability of critical oper-
ations or (b) create insecure systems where back-doors are
easily found.

Consider the following incident (obtained by us as an
anecdotal verbal report):

A European luxury car manufacturer noticed that one
of its models was a disproportionately likely target for theft.
The mystery was solved when an apprehended thief revealed
that this model of car easily opened even when its doors
were locked. When jumping on the roof of the car, doors
would unlock. The designers of the car included a safety

feature whereby the doors of the car would unlock if the car
was involved in an accident and rolled over. To check for
roll-over situations they verified if enough pressure/weight
was being applied on the roof.

Hence, the process of increasing the safety of the sys-
tem actually decreased the security of the same system. By
providing the ability to get out of a car easily in the case
of a catastrophic event the designers also made it easier to
break in when there was no accident. Such problems can be
avoided by a novel co-design process that we propose here.
We need techniques to integrate safety and security as well
as the necessary trade-offs during the design phase. Some
of these trade-offs may not be evident up front but we need
an analysis technique that can alert us to their existence.

In this paper we propose techniques to alert us to con-
tradictions between the requirements for safety and secu-
rity. Typically, various domain experts must come together
to define a comprehensive set of requirements for any sys-
tem. However, often-times experts from differing domains,
such as safety and security, are relatively isolated from each
other. E.g., safety experts view the system in terms of fault
trees, (safety) risk analysis, reliability modeling, etc. while
security experts will view the system in terms of vulnera-
bility trees, attacker models, their version of (security) risk
analysis, etc. While developing complex systems such as
automobiles, avionics and healthcare it is not hard to lose
sight of the larger system. It is quite clear that human limi-
tations restrict normal designers from having a comprehen-
sive view of the system. What is needed then is an auto-
mated tool to detect when local decisions made at the re-
quirements level adversely impact other parts of the sys-
tem.

We propose a framework for detecting such conflicts that
includes:

1. extensible global language to specify the system and
environment

2. mechanisms to specify domain requirements

3. mechanisms to relate requirements across classes

4. find conflicts between requirement classes

We have created a prototype for the underlying for-
malisms using the Maude, rewriting logic, language [1].

www.manaraa.com

2. Resolving Safety and Security
Requirement Conflicts

Consider a building automation system1. The problem
is setup as having an exit door from some building or room
(perhaps a museum or even some top secret facility) that has
a status openable detailing whether the door can be opened
while exiting the building. In Figure 1, this is captured in
the Basic World block defining a model of the world that is
given. Let us now consider this problem from two the dif-
ferent viewpoints of safety and security. A safety designer
defines a set of environmental hazards that may influence
the system and associate potential risk values to them. Sup-
pose that the safety designer identifies that fire hazards must
be addressed. This is shown in Figure 1 that contains a haz-
ard model in the Safety World with one attribute that can be
in one of two states, fire or none (i.e., no hazards). Simi-
larly, the security designer will have a different set of goals
in mind. Perhaps access across the door must be restricted.
Hence, a model of a lock must be added to Security World
as well as a model of a person gaining access through the
door. Notice that although the safety and security designers
do not have a complete view of the system (the “world”),
they share a view of the basic world in their separate world
views. This is the link between them, since after all they are
designing for the same system.

Aside from the modeling objects in a world, certain
propositions must be defined in each of the various worlds.
Figure 1 illustrates a set of propositions defined in each view
of the world. In the Basic World the proposition “valid” de-
fines which world configurations are valid so we can ignore
unnecessary or impossible models of the world. The propo-
sition “can-open” defines when the door in the system is
openable. As an illustrating example, in Maude, we would
define this predicate to be true whenever the door object has
“openable” as true:

eq {C:Configuration < door : Door | openable : true >}
|= can-open = true .

Similarly, for the Safety World, we define the proposition
“haz-fire” for when a fire hazard exists, and for the Secu-
rity World, we define the propositions “locked” and “autho-
rized” for when the door is locked and when the person is
authorized respectively.

The propositions themselves are not interesting aside
from labeling the states in the world. However, with these
propositions we can now define interesting properties about
the world (or a “view” of the world). For each world view
there exist a set of assumptions and requirements. Assump-
tions specify a set of assumed relations between different

1 This problem is similar to that of the car door example mentioned in
section 1 and can be easily transposed to the same issue of doors being
“open” or “closed,” thus leading to the same contradictions between
safety and security

openable : Bool .
class Door |

valid, can−open

Model:

Propositions:

Assumptions:

Basic World

Requirements: none

none

Model:

type : HazardType .
enum HazardType

{none, fire}

Propositions:

noneAssumptions:

Requirements:

class Hazard |

Safety World Security World

Assumptions:

class Lock |
locked : Bool .

class Person |
authorzied : Bool .

Propositions:

Model:

Requirements:

haz−fire
locked, authorized

W |= ¬ authorized → lockedW |= haz-fire → can-open

W |= locked →¬can-open

Figure 1: Different Domain Models of the World

propositions so that any world not satisfying these assump-
tions will not be considered. The world view in our example
that lists an assumption is the Security World. Naturally, se-
curity mechanisms are added to a system with an assumed
behavior. E.g., a lock object is added into the security model
but it is only useful because of the assumption that a locked
door is an unopenable door (specified formally in the as-
sumptions part of the security model). After the assump-
tions are handled, the most interesting and non-trivial part
of design is specifying the requirements. The safety model
requirement specifies that in the event of a fire the door
should be open. The security model requirement specifies
that whenever a person is not authorized the doors should
remain locked.

What happens when there is a fire and an unauthorized
person is trying to escape the building? It should now be ap-
parent that these requirements conflict. Hence, to automate
the process of conflict detection, we must capture this no-
tion of conflict more formally. For short hand, we denote the
“Basic World,” “Safety World,” and “Security World” mod-
els as W0, Wsafety , and Wsecurity respectively. By defini-
tion, all models of the world in different domains includes
W0 (I.e. W0 ⊆ Wsafety , and W0 ⊆ Wsecurity). Now, we
define a combined version of the world that joins all do-
mains: W̃ = Wsafety]Wsecurity (which just performs the
disjoint union on components not common in W0 with re-
naming if there are name conflicts). We also define the fol-

www.manaraa.com

lowing propositions for W̃ (|= is the symbol for satisfies):

W̃ |= all-premise ⇔ W̃ |= locked → ¬can-open

W̃ |= safe ⇔ W̃ |= haz-fir → can-open

W̃ |= secure ⇔ W̃ |= ¬authorized → locked

As a sanity check there should be a common notion of
normal operation. In our case this would be when all users
are authorized and no hazards are present. If defined prop-
erly, normal operation should satisfy both safety and secu-
rity, i.e., the configurations satisfying both safety and secu-
rity should not be empty.
search {choose(init)} =>* W:World

such that
W:World |= valid and W:World |= all-premise and
W:World |= safe and W:World |= secure .

If the above search returns no solutions then it means
that the safety and security designers had completely differ-
ent ideas about system operation. Fortunately, in our case,
there are five configurations common to safety and security.
We present the first solution below:
Solution 1 (state 67)
states: 68 rewrites: 2569 ... (12ms real)
W -->
{
< door : Door | openable : true >
< hazard : Hazard | type : none >
< lock : Lock | locked : false >
< person : Person | authorized : true >
}

Now, the conflict detection formula for safety and secu-
rity is just as simple. We search for all configuration that are
safe but insecure and also we search for all the configura-
tions that are secure but unsafe. This is done using the fol-
lowing queries:
search {choose(init)} =>* W:World

such that
W:World |= valid and W:World |= all-premise and
W:World |= safe and not (W:World |= secure) .

search {choose(init)} =>* W:World
such that
W:World |= valid and W:World |= all-premise and
not (W:World |= safe) and W:World |= secure .

The solutions returned from such searches can be of two
forms, one more easier to resolve than the other. The easier
case is that one domain did not know all the factors in the
global configuration. E.g., in the absence of fires the safety
experts would agree that a person needs to be authorized be-
fore the door is openable. The other case is a true conflict
an example of which is shown below:
Solution 2 (state 72)
states: 73 rewrites: 2949 ... (17ms real)
W -->
{
< door : Door | openable : true >
< hazard : Hazard | type : fire >
< lock : Lock | locked : false >
< person : Person | authorized : false >
}

This shows the situation when there exists a fire and an
unauthorized person gains access. Neither the safety nor the
security designers can yield immediately without more de-
tailed information. E.g., for a school building, the safety re-
quirement would dominate but for a top secret facility, the
security requirement would dominate.

The current conflict detection technique is by brute force
search through all possible valid models of the world that
satisfy the initial assumptions. Although inefficient, this
provides a systematic and exhaustive way of reminding dif-
ferent design domains about potential conflicts and, ulti-
mately, serving its purpose as a communication mechanism
between different designers to detect impacts of their re-
quirements (and related changes) on the rest of the system.

There is the potential concern that too many conflicts
will be detected that overwhelm the different designers be-
yond comprehension. On a pragmatic level, we believe that
any kind of assistance is better than no assistance. On a
technical level, using a compiler analogy, a programmer
never really reads through all the potentially daunting list
of compile-time errors – he/she just looks at the first error,
fixes it and then recompiles; most of the time this removes
multiple bugs (e.g. in the case of missing semicolon). We
believe that requirement conflicts should be treated in the
same way. Many requirement conflicts may be detected but
when the designer addresses a specific conflict the solution
may resolve a whole class of conflicts.

2.1. Proposed Framework
From the above example, we can hypothesize a gen-

eral framework for specifying domain models and require-
ments and finding conflicts. We define a world as a 4-
tuple consisting of the model (classes and objects), propo-
sitions (and definitions), assumptions, and requirements:
W = (M, P, A,R). We start with an initial, common world
and each new domain adds its view to the world. Thus, if the
initial world is W0 then each new domain Di extends the
initial world W0 into WDi (where W0 ⊆ WDi). For anal-
ysis we consider a joined world W̃ where W̃ = WD1 ./
WD2 .// WDn is the join of n different domain views
of the world. At this point, we speculate that the general
method of obtaining a joined world is the disjoint union
of the domain specific model components as in the exam-
ple (I.e ./ =]). However, regardless of the definition for
W̃ it is necessary that a family of unique projection func-
tions πDi exist such that πDi(W̃) = WDi (i.e. we do not
loose domain information when merging domains).

With these definitions the process of detecting conflicts
between two domains Di and Dj is reduced to finding any
world models w ∈ W such that w |= Ã ∧ RDi ∧ ¬RDj

or w |= Ã ∧ ¬RDi ∧ RDj where Ã denotes all assump-
tions in W̃ . When all possible conflicts between two do-
mains have been resolved by removing some requirements

www.manaraa.com

and/or adding other requirements to the world with mod-
els MDi

./ MDj
, we would have created a merged world

WDi,j where all requirements are consistent. Furthermore,
since the process of resolving conflicts merges two domains
it suggests an algorithm for removing all inconsistencies by
analyzing domains in a pairwise manner by merging two
domains at a time.

Currently, our framework identifies conflicts for design-
ers who may then proceed to resolve them. Identifying a
problem is a necessary and important step before solving it.
However, we have not considered how to categorize such
conflicts in terms of importance and criticality. Further-
more, it may also be possible to have automated tools that
handle the conflicts. These are a few of the directions we
plan to explore in the future.

3. Related Work
The closest work in integrating security into safety-

critical CPS is our previous work that proposes solutions on
integrating security policies into the real-time task frame-
work [8]. Other existing work has explored the duality be-
tween safety and security. Simpson [10] applied the secu-
rity concept of noninterference to analyze safety properties
of communication networks. Stavridou [12] also found sim-
ilar relations by applying noninterference and well known
safety techniques of fault tolerance for intrusion detec-
tion. Given the similarities between safety and security,
Eames [3] and Stoneburner [13] have presented method-
ologies for analyzing safety and security concurrently by
proposing a merged risk analysis process. Novak [9] an-
alyzed these methodologies in even more detail by pre-
senting an integrated safety and security life cycle process
for design of building automation systems. Smith [11] has
also presented similar integration ideas in rail communica-
tions systems. All of these techniques are complementary
to the ideas proposed in this paper since our framework an-
alyzes conflicts in the requirements using a formal process.
Other techniques can then be applied to improve the over-
all safety/security of the system.

We used the example of building automation to illustrate
our proposed methods since it a relevant problem. How-
ever, it will be in new applications domains where safety
and security conflicts are still uncertain that our techniques
will be most useful. Representative publications [6, 7] have
brought to light many of the security factors in domains
such as power grids and smart vehicles. Recently, the secu-
rity risks of implanted medical devices [5], especially pace-
makers [4], were brought to the attention of the community.
Denning [2], has proposed solutions in resolving the spe-
cific safety and security conflicts such as information ac-
cess in medical devices. As more security issues are identi-
fied for medical devices, many new and subtle requirement
conflicts may result and resolving these will be key towards
safe and secure medical devices in the future. This is where

our work will be able to provide key insights to the secu-
rity/safety requirements in the domain.

4. Conclusion
In this paper we propose techniques that can be used

to detect conflicts between requirements in differing de-
sign domains. We especially care about safety and secu-
rity as they are vital to most modern CPS domains. We
propose a framework that helps alleviate contradictory re-
quirements between these two domains by allowing safety
and security specifications to remain decoupled initially. An
automated tool then detects the truly coupled requirements
among the two domains, thus, providing system designers
information on problems that would have been difficult to
detect by manual processes alone.

References
[1] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet,

J. Meseguer, and C. Talcott. The Maude 2.0 system. In
R. Nieuwenhuis, editor, Rewriting Techniques and Applica-
tions (RTA 2003), number 2706 in Lecture Notes in Com-
puter Science, pages 76–87. Springer-Verlag, June 2003.

[2] T. Denning, K. Fu, and T. Kohno. Absence makes the heart
grow fonder: New directions for implantable medical device
security. 3rd USENIX Workshop on Hot Topics in Security
(HotSec ’08), July 2008.

[3] D. P. Eames and J. D. Moffett. The integration of safety
and security requirements. In SAFECOMP ’99: Proceed-
ings of the 18th International Conference on Computer Com-
puter Safety, Reliability and Security, pages 468–480, Lon-
don, UK, 1999. Springer-Verlag.

[4] D. Halperin, T. Heydt-Benjamin, B. Ransford, S. Clark,
B. Defend, W. Morgan, K. Fu, T. Kohno, and W. Maisel.
Pacemakers and implantable cardiac defibrillators: Software
radio attacks and zero-power defenses. In Security and Pri-
vacy, 2008. SP 2008. IEEE Symposium on, pages 129–142,
May 2008.

[5] D. Halperin, T. Kohno, T. Heydt-Benjamin, K. Fu, and
W. Maisel. Security and privacy for implantable medical de-
vices. Pervasive Computing, IEEE, 7(1):30–39, Jan.-March
2008.

[6] J. Hubaux, S. Capkun, and J. Luo. The security and privacy
of smart vehicles. Security and Privacy, IEEE, 2(3):49–55,
May-June 2004.

[7] W. Johnston, D. Gannon, and B. Nitzberg. Grids as pro-
duction computing environments: the engineering aspects of
nasa’s information power grid. In High Performance Dis-
tributed Computing, 1999. Proceedings. The Eighth Interna-
tional Symposium on, pages 197–204, 1999.

[8] S. Mohan. Worst-case execution time analysis of security
policies for deeply embedded real-time systems. SIGBED
Rev., 5(1):1–2, 2008.

[9] T. Novak, A. Treytl, and P. Palensky. Common approach to
functional safety and system security in building automation
and control systems. pages 1141–1148, Sept. 2007.

www.manaraa.com

[10] A. Simpson, J. Woodcock, and J. Davies. Safety through se-
curity. In IWSSD ’98: Proceedings of the 9th international
workshop on Software specification and design, page 18,
Washington, DC, USA, 1998. IEEE Computer Society.

[11] J. Smith, S. Russell, and M. Looi. Security as a safety is-
sue in rail communications. In SCS ’03: Proceedings of the
8th Australian workshop on Safety critical systems and soft-
ware, pages 79–88, Darlinghurst, Australia, Australia, 2003.
Australian Computer Society, Inc.

[12] V. Stavridou and B. Dutertre. From security to safety and
back. In CSDA ’98: Proceedings of the Conference on
Computer Security, Dependability, and Assurance, page 182,
Washington, DC, USA, 1998. IEEE Computer Society.

[13] G. Stoneburner. Toward a unified security-safety model.
Computer, 39(8):96–97, Aug. 2006.

